今天介绍MEMS刻蚀工艺中的下半部,主要涉及电化学蚀刻(Electrochemical Etching)、等离子蚀刻(Plasma Etching)与反应离子刻蚀(RIE)、深度反应离子蚀刻(Deep reactive ion etching)。

图-MEMS工艺流程图

电化学蚀刻

采用各向异性湿法蚀刻剂具有相对较大的蚀刻速率(>0.5μm/min),但难以实现均匀且受控的蚀刻深度。例如在MEMS压力传感器的加工中,需要厚度5至20μm、其均匀性控制在0.2μm的薄硅膜,使用定时蚀刻就很难实现这一点。

在这种场景中可采用电化学蚀刻(Electrochemical Etching),其厚度的均匀性控制是通过精确生长的外延层并通过外部施加的电势控制蚀刻反应来实现的。

图-电化学蚀刻原理示意图

比如,在p型晶圆上生长的n型外延层形成p-n结二极管,只有当p型侧的电压高于n型时才允许导通,称为正向偏执;否则,没有电流通过,称为反向偏置。

在电化学蚀刻期间,所施加的电势使得p-n二极管处于反向偏压,采用KOH刻蚀剂溶液,n型外延层不会被蚀刻,p型基板允许被蚀刻。一旦p型衬底被完全去除,蚀刻反应就会在结处停止,留下一层具有精确厚度的n型硅。

下述是基于电化学蚀刻实现MEMS压力传感器薄硅膜(为n型外延硅)的示意图:

图-电化学蚀刻实现MEMS压力传感器薄硅膜(为n型外延硅)

等离子蚀刻与反应离子刻蚀

等离子蚀刻,是半导体行业的关键工艺。其中,Applied Materials、Lam Research、SPTS、TEL等公司是硅、二氧化硅、氮化硅、一些金属材料的等离子蚀刻设备系统的领先开发商。

在等离子环境中,有高度化学活性的中性原子、分子及自由基的等离子体,这些处于等离子体状态的物质在电场作用下向基板加速运动,再加上反应气体(例如 SF6、CF4、Cl2、CClF3、NF3等)碰撞,可以对目标进行蚀刻。如果这个过程是纯粹的化学反应,称为等离子体蚀刻(Plasma Etching)。

如果化学反应过程中,硅的表面还受到高能粒子轰击(ion bombardment),两者发挥协同作用,则该过程被称为反应离子蚀刻(Reactive ion etching,RIE)。在RIE中,离子(例如 SFx+)朝向基板的运动几乎是垂直的,这使得RIE具有垂直的方向特性。RIE通常用于表面刻蚀加工。

还有一种纯粹的物理蚀刻方法是离子铣削(Ion milling),其中先要产生惰性气体(通常是氩气)离子,然后通过1kV量级的电势在基板上加速。离子的方向性导致非常垂直的蚀刻轮廓。由于不需要化学反应,任何材料都可以通过离子铣削进行蚀刻。离子铣削速率通常比 RIE 慢得多,并且随材料的不同而变化很大。

以上三种同属干法刻蚀,是不是很绕?看下面这个图示也许会清楚一些:

图-等离子刻蚀、RIE、离子铣削工艺原理示意图

特别对于RIE来说,化学反应形成的副产物必须具有足够的挥发性,以便可以从真空室中排出,这一点至关重要。例如,在铜蚀刻中,产物CuCl2的挥发性不够,因此铜的RIE在实际应用中相当困难。下图总结了刻蚀不同材料的 RIE 的典型气体:

当然,以上刻蚀反应都会随着具体工艺参数配方的影响很大,下图列举了一些参数中的变量,上述的3种(等离子刻蚀、RIE、离子铣削)可能相互过渡,所以放在一起介绍:

图-等离子刻蚀参数变量

特别的,还有一种电感耦合等离子体反应离子蚀刻(Inductively coupled plasma,ICP-RIE)通过外部施加射频电磁场为电子云提供更大的激发。电感耦合等离子体增加了离子和中性粒子的密度,从而提高了蚀刻速率。ICP也可以用于体硅刻蚀加工。

图-ICP-RIE示意图,其中金属线圈就是用于射频耦合产生射频电磁场

深度反应离子蚀刻

传统的等离子体蚀刻工艺通常用于MEMS加工中形成浅腔。后来20世纪90年代中期,科学家们推出了深度反应离子蚀刻(Deep reactive ion etching,DRIE)系统,可以蚀刻具有几乎垂直侧壁的高深宽比沟槽,其深度超过可达500μm。

德国斯图加特的Robert Bosch GmbH的有一种DRIE专利方法,其中蚀刻和沉积步骤在ICP-RIE系统中交替进行,具体过程为:薄膜沉积、底部薄膜蚀刻和硅蚀刻。在沉积工艺中,在沟槽的侧壁和底面上沉积钝化膜。在底部膜蚀刻步骤中,选择性地蚀刻沟槽底部上的钝化膜。在硅蚀刻步骤中,仅蚀刻已去除钝化膜的沟槽底部的硅。

图-Bosch DRIE工艺示意图

在蚀刻过程中,垂直取向的离子(SFx+)增强了氟自由基,去除沟槽底部沉积而成的钝化膜,同时薄膜沿侧壁保持相对完整。扇形的程度(由于蚀刻的各向同性成分而产生的侧壁纹理)随配方的不同而变化。此外,DRIE蚀刻速率会随着沟槽深宽比的增加而降低。对二氧化硅的高选择性使得蚀刻深沟槽并停止在二氧化硅埋层上成为可能,例如适用于SOI(绝缘体上硅)晶圆。以下是一些Bosch 工艺的效果图:

图-Bosch 工艺效果图

总之,DRIE是形成具有接近垂直侧壁的深沟槽的强大工具,可调参数多,结果要求也多,所以蚀工艺难度大,如以刻蚀的沟槽纵横比vs速率、良好的均匀性、高垂直度、小扇形等作为优化目的,但一般来说所有的优化不能同时进行,所以每种掩模图案和深度都需要刻蚀工艺工程师进行工艺开发。

文章来自:知乎

Loading

作者 yinhua

发表回复